Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Arch Virol ; 168(6): 161, 2023 May 13.
Article in English | MEDLINE | ID: covidwho-2316516

ABSTRACT

Porcine circovirus 4 (PCV4) is a recently discovered circovirus that was first reported in 2019 in several pigs in Hunan province of China and has also been identified in pigs infected with porcine epidemic diarrhea virus (PEDV). To further investigate the coinfection and genetic diversity of these two viruses, 65 clinical samples (including feces and intestinal tissues) were collected from diseased piglets on 19 large-scale pig farms in Henan province of China, and a duplex SYBR Green I-based quantitative real-time polymerase chain reaction (qPCR) assay was developed for detecting PEDV and PCV4 simultaneously. The results showed that the limit of detection was 55.2 copies/µL and 44.1 copies/µL for PEDV and PCV4, respectively. The detection rate for PEDV and PCV4 was 40% (26/65) and 38% (25/65), respectively, and the coinfection rate for the two viruses was 34% (22/65). Subsequently, the full-length spike (S) gene of eight PEDV strains and a portion of the genome containing the capsid (Cap) gene of three PCV4 strains were sequenced and analyzed. Phylogenetic analysis showed that all of the PEDV strains from the present study clustered in the G2a subgroup and were closely related to most of the PEDV reference strains from China from 2011 to 2021, but they differed genetically from a vaccine strain (CV777), a Korean strain (virulent DR1), and two Chinese strains (SD-M and LZC). It is noteworthy that two PEDV strains (HEXX-24 and HNXX-24XIA) were identified in one sample, and the HNXX-24XIA strain had a large deletion at amino acids 31-229 of the S protein. Moreover, a recombination event was observed in strain HEXX-24. Phylogenetic analysis based on the amino acid sequence of the PCV4 Cap protein revealed that PCV4 strains were divided into three genotypes: PCV4a1, PCV4a2, and PCV4b. Three strains in the present study belonged to PCV4a1, and they had a high degree of sequence similarity (>98% identity) to other PCV4 reference strains. This study not only provides technical support for field investigation of PEDV and PCV4 coinfection but also provides data for their prevention and control.


Subject(s)
Circovirus , Coinfection , Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Circovirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Coronavirus Infections/prevention & control , China/epidemiology
2.
Mod Rheumatol ; 2023 Mar 24.
Article in English | MEDLINE | ID: covidwho-2288806

ABSTRACT

Little is known about the association between coronavirus disease 2019 [COVID-19] and autoimmune diseases, especially for systemic lupus erythematosus [SLE]. SLE patients meet with a throng of questions during the pandemic, including minimize the risk of infection, the complex pathological features and cytokine profiles, diagnosis and treatment, rational choice of drugs and vaccine, good nursing and psychological supervision, etc. In this study, we review and discuss the multifaceted effects of the COVID-19 pandemic on patients living with SLE using the available literatures. Cross-talk was existed in implicated inflammatory pathways/mechanisms between SLE and SARS-CoV-2 infection, and SARS-CoV-2 infection shares similarities with SLE in clinical characters and immuno-inflammatory responses. Current epidemiological data inadequate assess the risk and severity of COVID-19 in SLE. More evidences supported that HCQ and CQ unable prevent COVID-19. During the pandemic, patients with SLE had a higher rate of hospitalization. Vaccination helps to reduce the risk of infection. Several therapies for patients with SLE infected COVID-19 were discussed. The cases in the study can provide meaningful information for clinical diagnosis and management. Our mainly aim is to help the prevention and treatment of patients with SLE infected COVID-19.

3.
Viruses ; 14(3)2022 02 27.
Article in English | MEDLINE | ID: covidwho-1765944

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the major pathogen that causes diarrhea and high mortality in newborn piglets, with devastating impact on the pig industry. To further understand the molecular epidemiology and genetic diversity of PEDV field strains, in this study the complete genomes of four PEDV variants (HN2021, CH-HNYY-2018, CH-SXWS-2018, and CH-HNKF-2016) obtained from immunized pig farms in central China between 2016 to 2021 were characterized and analyzed. Phylogenetic analysis of the genome and S gene showed that the four strains identified in the present study had evolved into the subgroup G2a, but were distant from the vaccine strain CV777. Additionally, it was noteworthy that a new PEDV strain (named HN2021) belonging to the G2a PEDV subgroup was successfully isolated in vitro and it was further confirmed by RT-PCR that this isolate had a large natural deletion at 207-373 nt of the ORF3 gene, which has never been reported before. Particularly, in terms of pathogenicity evaluation, colostrum deprivation piglets challenged with PEDV HN2021 showed severe diarrhea and high mortality, confirming that PEDV HN2021 was a virulent strain. Hence, PEDV strain HN2021 of subgroup G2a presents a promising vaccine candidate for the control of recurring porcine epidemic diarrhea (PED) in China. This study lays the foundation for better understanding of the genetic evolution and molecular pathogenesis of PEDV.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Vaccines , Animals , China/epidemiology , Diarrhea , Phylogeny , Swine , Virulence
4.
BMC Pulm Med ; 22(1): 71, 2022 Feb 25.
Article in English | MEDLINE | ID: covidwho-1698249

ABSTRACT

BACKGROUND: Prone positioning enables the redistribution of lung weight, leading to the improvement of gas exchange and respiratory mechanics. We aimed to evaluate whether the initial findings of acute respiratory distress syndrome (ARDS) on computed tomography (CT) are associated with the subsequent response to prone positioning in terms of oxygenation and 60-day mortality. METHODS: We retrospectively included patients who underwent prone positioning for moderate to severe ARDS from October 2014 to November 2020 at a medical center in Taiwan. A semiquantitative CT rating scale was used to quantify the extent of consolidation and ground-glass opacification (GGO) in the sternal, central and vertebral regions at three levels (apex, hilum and base) of the lungs. A prone responder was identified by a 20% increase in the ratio of arterial oxygen pressure (PaO2) to the fraction of oxygen (FiO2) or a 20 mmHg increase in PaO2. RESULTS: Ninety-six patients were included, of whom 68 (70.8%) were responders. Compared with nonresponders, responders had a significantly greater median dorsal-ventral difference in CT-consolidation scores (10 vs. 7, p = 0.046) but not in CT-GGO scores (- 1 vs. - 1, p = 0.974). Although dorsal-ventral differences in neither CT-consolidation scores nor CT-GGO scores were associated with 60-day mortality, high total CT-GGO scores (≥ 15) were an independent factor associated with 60-day mortality (odds ratio = 4.07, 95% confidence interval, 1.39-11.89, p = 0.010). CONCLUSIONS: In patients with moderate to severe ARDS, a greater difference in the extent of consolidation along the dependent-independent axis on CT scan is associated with subsequent prone positioning oxygenation response, but not clinical outcome regarding survival. High total CT-GGO scores were independently associated with 60-day mortality.


Subject(s)
Pulmonary Gas Exchange , Respiratory Distress Syndrome , Humans , Prognosis , Prone Position/physiology , Pulmonary Gas Exchange/physiology , Respiratory Distress Syndrome/diagnostic imaging , Respiratory Distress Syndrome/therapy , Retrospective Studies , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL